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Two models for raindrop growth in clouds are developed and compared with an interpretation to 
elucidate the rain drop relationship among both the models. A continuous accretion model is solved 
numerically for drop growth from 20 to 50 microns, using a polynomial approximation to the collection 
kernel, and is shown to underestimate growth rates. A Monte Carlo simulation for stochastic growth 
have also been implemented to demonstrate the discrete drop growth. The approach models the effect 
of decreased average time between captures as the drop size increases. It is found that the stochastic 
model yields a more realistic growth rate, especially for larger drop sizes. It is concluded that the 
stochastic model shows faster droplet accumulation and hence shorter time for drop growth.  
 
Key words: Raindrop growth, continuous collection, stochastic collection, Monte Carlo method, implicit and 
semi-implicit technique. 

 
 
INTRODUCTION 
 
In clouds, the development of a size distribution of rain 
drops with radius R, as they collect droplets of radius 𝑟, is 
described by a nonlinear differential equation relating the 
mean number concentration of droplets N(𝑟) to the rate at 
which drops and droplets collide and coalesce. The effect 
of mixing between upwards and downwards moving 
entities is to reduce the concentration of droplets in the 
ascending air. The super supersaturated created in the 
updraft is then distributed over fewer drops, permitting 
them to grow to larger sizes. The saturated cannot persist 
and much less grow unless the environment is super-
saturated (H >100%) by the amount equal to the vapor 
pressure of  the  droplet  by  according  to  Richard  et  al.  

(1992).  
Rain drop collision does not guarantee coalescence. 

When a pair of drops collides they may subsequently: (i) 
bounce apart, (ii) coalesce and remain so, (iii) coalesce 
temporarily but then break apart, retaining their initial 
identities, (iv) coalescence temporarily but then break 
apart to a number of smaller drops. For sizes smaller 
than 100 microns in radius, the important interactions are 
(i) and (ii), described by Barnet (2011) and Rogers and 
Yau (1989).  

In stochastic raindrop growth, coalescence can broaden 
the droplet spectrum, but is hindered in the early growth 
stages by the fact that the collection efficiencies  between
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small droplets are extremely small. Coalescence is not 
sufficient to account for rain development over short 
periods as shown by an earlier study (Robertson, 1974). 
It is now recognized that statistical effects are crucial in 
the early stages of coalescence. Consequently a 
stochastic coalescence model provides a convenient 
means to describe this process (Kostinski and Shaw, 
2005a, b). It is also found that the positions of droplets in 
a natural cloud were not perfectly random but there was 
some degree of correlations with local fluctuations in 
droplet number density as explained by Uchida and Ohta 
(1969, 1971). According to Rogers and Yau (1989), as 
droplets grow, their collection efficiencies increase, 
increasing the probability of coalescence. Once it begins 
coalescence proceeds rapidly, as indicated by the fast 
decline in the number of drops. At the same time, super 
saturation increases sharply because the drops, now 
fewer in number, are no longer able to consume the 
excess vapor at the rate it is created. But overall in 
nature, the effect on coalescence of charge on the drops, 
comparable to that observed on raindrops in nature is 
small according to Kenrick and Walter (1951).  

In general, the continuous and stochastic growth of rain 
drop are classified by the relative amount of water 
collected from the different sizes of small droplets to large 
droplets, which is mainly dependent upon the mass and 
size of the droplets. Droplets growing according to the 
continuous model collect most of their water by capture of 
droplets while droplets growing by stochastic model 
collect water from droplets of all the small sizes. 
According to Berry (1967), the average rate of mass and 
size increase of n

th
 droplet due to the capture of r

th
 

droplets is equal to the product of the collection 
kernel (volume swept out per unit time and the mass 
density function (mass per unit volume per unit size of 
interval).  

The effects of turbulence in a cloud can be modeled by 
a probabilistic collection kernel where the magnitude of 
the collection kernel indicates, the importance of 
turbulence (Berry, 1967). Turbulence is very important 
and creates a positive correlation between super-
saturation and droplet surface area fluctuation that 
increases as the turbulent scale separation explained by 
Gaetano et al. (2015). 

In this work we developed and compared two models 
for raindrop growth in clouds based on continuous 
accretion and stochastic technique by using numerical 
solution and Monte Carlo simulation. It is found that the 
stochastic model yields a more realistic growth rate, 
especially for larger drop sizes. We applied 
MATLAB/MAPLE13 for numerical techniques and 
programming. This article basically reviews the growth of 
rain drop and compared their trends of growth by 
continuous and stochastic techniques in clouds (for 
example, Rogers and Yau, 1989; Pruppacher and Klett, 
1997).  

Siddiqui and Quine          33 
 
 
 
METHODOLOGY 
 
Consider a collector (larger) drop of radius R that is falling relative 
to a field of smaller droplets of radius r. The rate at which the 
collector collides with the smaller droplets is proportional to the 
shared collision volume, ( , )cV R r , which is given by the cross-

sectional areas of both the drop and the droplet and their vertical 
velocities 𝑢(𝑅), u(r). Derivation and discussion of Equations can be 
found in Long (1973); Long and Manton, (1974) and Robertson 
(1974).  
 

2( , ) ( ) { ( ) ( )}cV R r R r u R u r                              (1) 

 
The probability that a collision between a drop and a droplet results 
in an actual capture (coalescence) is described by the collection 
efficiency E(R,r). Given that the mean number of droplets within the 

collision volume is ( , ) ( )cV R r N r , where N(r) is the mean number 

concentration of droplets, the probability per unit time that a drop 
captures a droplet is: 
 

( , ) ( , ) ( ) ( , )cP R r V R r N r E R r

2( ) { ( ) ( )} ( ) ( , )R r u R u r N r E R r                              (2) 

 
The realistic growth of a collector drop is discrete, where capture of 
each droplet increases the mass of the drop M(𝑅) by the finite 
droplet mass m(𝑟). The collector drop also grows stochastically, 
where each capture has a probability between 0 and 1. The mean 
growth rate of the collector drop is described by: 
  

( )
( ) ( , )

dM R
m r P R r

dt


                            (3) 
 
As a first approximation, we consider the simplest type of model for 
collection growth, the continuous model, as: 
 

2( )
( ) ( ) { ( ) ( )} ( ) ( , )

dM R
m r R r u R u r N r E R r

dt
          (4) 

 

( )
( , ) ( )L

dM R
K R r w r

dt
                                                            (5) 

 
Here we have two factors: the droplet collection kernel 

2( , ) ( ) { ( ) ( )} ( , )K R r R r u R u r E R r   , and the liquid water 

content of the droplets, ( ) ( ) ( )Lw r m r N r . A method for deriving 

an analytical solution for the droplet collection equation, using a 

polynomial approximation to the kernel, 2( , )PK R r cx . Here c is 

a scaling factor and 𝑥≡𝑉(R) is the collector drop volume. Then the 
collection equation becomes: 
 
 

2( )
( ) ( )

dM R
cV m r N r

dt
  

2( )
( ) ( )

dV R
cV v r N r

dt
                              (6) 

 

Here, v(r) is the droplet volume. An analytical solution for V(t) is 
found by integrating the above equation, to give: 
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Figure 1. Droplet terminal velocity as a function of droplet size.  

 
 
 

0

1
( )

(1/ )
V t

V cNvt



                               (7) 

 
and 𝑉𝑜 is the initial collector drop volume and 𝑐 = 1.1 x 10

10 
cm

-3
s

-1
 

is the constant related to the polynomial kernel according to Long 
and Manton (1974). For the continuous model of collection growth, 
equation (8) is numerically solved using an implicit or semi-implicit 
integration scheme. The implicit scheme is: 
  

21
1

( )
( ) ( ).

Δ
n n

n

V V
cv r N r V

t





                               (8) 

  
The semi-implicit equation is: 
 

1
1

( )
( ) ( ).

Δ
n n

n n

V V
cv r N r V V

t





                                  (9) 

 
A Monte Carlo simulation of stochastic drop growth have also been 
implemented. First, we have calculated the time interval ∆t to 
perform a discrete simulation step for which the probability of 

capture ( , )Δq P R r t , where q is chosen to be a small value 

such as 0.1 as suggested by Long (1973). If a uniformly distributed 
random number x between 0 and 1 is generated and x > q, then  no 

capture occurs during the time interval Δ / ( , )t q P R r . If x ≤ 

q, a capture is deemed to have occurred and M(𝑅) is increased by 
m(𝑟). Before the next time step, P(𝑅,𝑟) and ∆t have been 
recalculated by using the proposed model which corresponds to the 
value of 𝑅 according to Robertson (1974). 
 
 
Droplet terminal velocity 
 
One important factor in drop formation is the droplet terminal 
velocity. In general, when downward net gravitational force is equal 
to upward drag force (that is, FG = Fdrag), the droplet reaches a 
steady fall speed, its terminal velocity. Terminal velocities depend 
mainly on the size of the droplet. Figure 1 shows the droplet 
terminal velocity as a function of its radius, with different droplet 
regimes showing different behaviors agreed by the results of 
Rinehart (1990). By Rogers and Yau (1989), for small droplet sizes 
(r ≤ 30µm), flow is completely dominated by air viscosity, and the 
terminal velocity increases quadratically: 𝑢 = k1r

2
 with k1 = 1.19 x 

10
8 
s

-1
m

-1
. For larger sizes (30µm ≤ r ≤ 10

3
µm), flow is turbulent and 

is assumed to be homogeneous and isotropic, and the velocity 
grows linearly: u = k3r with k3 = 8 × 10

3
 s

-1
.
 
 

 

 
Collection efficiency 

 
The probability that a collision between a  drop  of  radius  𝑅  and  a  
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Figure 2. Collection efficiency as a function of drop radius R, for collisions with droplets of radius r = 10 µm.  

 
 
 
droplet results in a capture is called efficiency and is given by E(𝑅,r) 
= xo

2
/(𝑅 + 𝑟)2

. The value of 𝑅 is important for any size of collector 
drop and 𝐸 is small for small values of 𝑟/𝑅. The collision efficiency 
as a function of drop radius R increases with drop size, as shown in 
Figure 2.  
 
 
Accuracy and sensitivity of the models 
 
The accuracy, sensitivity and complete statistical analysis of both 
the models have been done by Monte Carlo trials with q=0.1, 
N=1000, capture probability and average growth-times Tavg (q) 
computed for 100 values of q in the range [0.01, 1.0] as shown in 
Figure 4 to 6, respectively. 
 
 
RESULTS AND DISCUSSION 
 
Drop growth have been computed for an initial collector 

drop radius of 𝑅i = 20 µm and continued until the drop 

reached a final radius 𝑅f = 50 µm. The collected droplets 
have a radius of 𝑟 = 10 µm and a concentration N(r) = 
100 cm

-3
. For continuous growth both numerical 

techniques have been applied and the results are plotted 
in Figure 3 along with the analytical solution. The 
stochastic growth was computed using a capture 
probability of q=0.1. The average growth time by using 
Monte Carlo runs is also shown in Figure 3. The 
analytical solution have been shown as  a  thick  red  line, 

with semi-implicit and implicit numerical solutions shown 
as circles and squares, respectively. The average growth 
time computed with the stochastic model have been 
plotted as a thick dashed-dot line, with the two standard 
deviation range bounded by the dotted lines and shaded 
in yellow. While the average result shows the continuous 
growth curves are in close agreement, it is evident that 
the drop growth rate becomes slower than the Monte 
Carlo solution as the drop radius increases.  

In the Monte Carlo technique, the average time 
between captures gets smaller as the drop grows. As 
expected, after a sufficiently large number of captures i.e. 
at a larger drop radius R, the growth curves stabilize, and 
increase in parallel to the continuous growth curve also 
explained by Robertson (1974). The various Monte Carlo 
runs exhibit statistical variations, but yield shorter 
average growth time than the continuous model, since 
their rates increase substantially once the collector drop 
radius exceeds about 25 microns. The 25 microns were 
also reported as barrier to stochastic growth rate of rain 
by Hawkes (1972).  
 
 
Model sensitivity 
 
To explore the statistical behavior and accuracy of the 
discrete model, a large number (N=1000) of Monte  Carlo  
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Figure 3. Collector drop radius R as a function of time for continuous and stochastic growth models.  

 
 
 

 
 

Figure 4. Distribution of collector drop growth times T, obtained from N=1000 Monte Carlo trials with q=0.1: 
Tavg = 4445 s, σ = 953 s. 
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Figure 5. Average growth times obtained using 100 equally-spaced values of q in the range from 0.01 to 1.0. 

 
 
 

 
 

Figure 6. Distribution of average growth times obtained using 100 equally-spaced values of q in the range 
from 0.01 to 1.0: < Tavg > = 4434 s, σ = 32 s. 

 
 
 
runs have been performed, yielding a distribution of drop 
growth times, shown in Figure 4. This distribution has a 
mean   growth   time,   Tavg =   4445 s,   with   a   standard 

deviation σ = 953 s (a 22% uncertainty). To check the 
sensitivity of the model to the capture probability, average 
growth-times Tavg (q) have been computed for 100 values  
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of q in the range [0.01, 1.0]. The resulting values are 
shown in Figure 5 and their distribution are shown in 
Figure 6, with a mean < Tavg > = 4434 s and σ = 32 s. 
This demonstrates the low sensitivity of the model to 
variation of q, with only 0.7% variation in the average 
growth time.  
 
 
Conclusion 
 
Continuous and stochastic models have been used to 
simulate the accretion growth of an individual collector 
drop from a starting size of 20 microns to a final size of 
50 microns. In the continuous accretion case, the time for 
drop growth is unrealistically long due to large 
accumulation of water contents. In contrast, the 
stochastic model showed faster droplet accumulation and 
hence shorter times for drop growth. For a fixed choice of 
capture probability q=0.1, the average growth time Tavg 
has an uncertainty of 22%. However the sensitivity of Tavg 
to the capture probability was found to be small: when q 
is varied between 0.01 and 1.0, it showed only a 0.7% 
variation. Finally, it is concluded that all the water mass 
moves with the mode in the stochastic model, whereas in 
the continuous model, most of the water mass must 
remain on the small droplets. This work leads to a 
significant role for the analysis of any future rain drop 
development methodology and any theoretical numerical 
weather forecasting test.  
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Understanding weather extremes and climate variability both in space and time based on historical 
surface observed climate data at watershed is very crucial as it is used as in put for applying the 
seasonal forecast given by National Hydrological and Meteorological Agencies, in decision making in 
agricultural activities, water resources projects, rainfall-runoff modeling, and for drought risk 
identification and assessment. This study examined the spatio-temporal variability of dry spell length in 
Kiremt (June to September) season and trend detection, as a means of indication for climate change, in 
rainfall extremes over Tekeze river basin, Ethiopia. Daily rainfall indices were used over the basin based 
on data available from 24 meteorological stations having variable record length spanning from 1960-
2009 with available data from 1992-2009 for most of the stations. Data quality control was done for 
infilling missing values and main quality tests of outliers and homogeneity tests. Temporal variability 
was analyzed by coefficient of variability and temporal trends were analyzed using Mann-Kendall 
method. Spatial distribution and variability was investigated using ordinary kirging interpolation 
technique. The results showed that: (1) The dry spell lengths for the months of kiremt season showed 
high temporal variability; (2) The dry spell lengths in the months of Kiremt season were shown to be 
higher in north-east and north-west of the river basin than the other parts; (3) The dry spell lengths 
were higher in the months of June and September and changed more rapidly in the basin than dry spell 
lengths in July and August; and (4) A significantly increasing trend on the 95

th
 percentile of daily rainfall 

was found at Gonder meteorological station and significantly decreasing trend on the 90
th

 percentiles of 
daily rainfall was found at Mekelle meteorological station. 
 
Key words:  Dry spell lengths, extreme rainfall, climate change, spatial variability.  

 
 
INTRODUCTION 
 
The use of implementing expensive and elaborate rainfall 
monitoring networks at a basin is to capture and 
understand the spatial and temporal variability of rainfall. 

Rainfall is the most important hydrological variable and it 
varies considerably over space and time. This variability 
makes it a major source of risk for agricultural  production 
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especially for a country like Ethiopia whose economy is 
dependent on rain-fed agriculture. This sector is highly 
sensitive to the spatial and temporal variability of rainfall 
and much below normal rainfall years in the country 
resulted in low agricultural production and as a 
consequence it affected millions of people in the country 
(Wolde-Mariam, 1984; Degefu, 1987; Hurni, 1993; 
Camberlin, 1997; Aredo and Seleshi, 2003). The spatial 
and temporal variability of water resources is also 
affected due to rainfall variability. Rainfall variability has 
greater impact on hydrology and water resources 
(Novotny and Stefan, 2007). The study of rainfall 
variability in time and space over long period of time is 
basic for water resources management and decision 
making strategies. According to Michaelides et al. (2009) 
understanding rainfall variability in time and space helps 
greatly for agricultural planning, rainfall-runoff modeling, 
water resources assessments and climate change and 
environmental impact assessments. 

Even though rainfall monitoring networks are sparsely 
distributed at the country, many researches have been 
conducted to understand rainfall variability using the 
existing stations in the country. The previous researches 
on the rainfall variability have been done on different 
spatial and temporal scales. Examples: Osman and 
Sauerborn (2002) studied the rainfall variability of the 
central highlands of Ethiopia for the main rain season 
(June to September) using 11 stations of data from 
(1898-1997) and noted a decreasing trend of seasonal 
rainfall in their study. Seleshi and Zanke (2004) studied 
the rainfall variability of Ethiopia at seasonal and annual 
time scales using 11 stations with data from (1965-2002) 
and noted no trend of rainfall at annual and seasonal time 
scales for Central, Northern and Northwestern Ethiopia 
highlands. But with significant trend over Eastern, Southern 
and Southwestern Ethiopia. Cheung et al. (2008) studied 
the rainfall variability of 13 watersheds of the whole Ethiopia 
using 134 stations of data between 1960 and 2002 at annual 
and seasonal time scales. For Tekeze river catchment 
they utilized nine rainfall stations and found no trend in 
the rainfall time series. The above previous studies, with 
contradicting conclusions, did not studied the rainfall 
variability at daily time and spatial scales and used few 
number of stations compared to their area  of studies.  

This study examined the variability dry spell lengths 
and trend detection in rainfall extremes at the Tekeze 
river basin both in time and space. It tried to answer such 
questions: (i) to what extent do the dry spell lengths vary 
in time and space? (ii) Which part of the river basin is 
more affected by dry spell lengths? (iii) How do the dry 
spell lengths vary from location to location in the river 
basin? And (iv) is there any climate change indication in 
rainfall extremes in the basin?  
 
 

Description of the study area 
 
Tekeze basin is one of the major river basins of Ethiopia.  

 
 
 
 
The basin is located in the Northern western part of 
Ethiopia (Figure 1). The basin consists of the main 
catchments of Tekeze, Angerb and Goang rivers. This 
study focuses only on the Tekeze river basin. Tekeze 
river basin is located at N to   N 

and  E to E in the Northern 

western part of Ethiopia. The Tekeze river basin has an 
area of 63,109.1 km

2
 with its out let located at N 

and   E. The river basin has a minimum elevation 

of 537 m.a.s.l and a maximum elevation of 4517 m.a.s.l. 
The annual rainfall variability in the Tekeze basin is very 
high. The mean annual rainfall in the basin ranges from 
about 600 mm in the north east to over 1200 mm in the 
high lands of south west (Belete, 2007). Generally the 
rainfall in the basin is high affected by local factors like 
topography and micro-climate in the basin (Amare, 1996). 
The year-to- year variability of annual rainfall totals in the 
basin is very high showing coefficient of variability 
ranging from 0.2 in the high lands of the basin to 0.4 over 
its low land part (Belete, 2007). The mean are 
temperature in the basin varies from about 10°C in the 
highlands of the basin to over 26°C on its lowlands. 
 
 

METHODOLOGY 
 
In order to examine the spatial and temporal variability of rainfall in 
the Tekeze river basin, the study approach is summarized as 
follows and details are presented in the subsections below. A 
Digital Elevation Model (DEM), which is 90 m spatial resolution, of 
the Tekeze river basin is downloaded from the website of 
http://srtm.sci.cgiar.org/SELECTION/input /input Coord.asp. And 
the location of each meteorological station was obtained from the 
website of www.nma.org.et of the National Meteorological Agency 
of Ethiopia. After delineating the Tekeze river basin from the DEM 
and identifying the meteorological stations which could represent 
the basin, quality control for the daily data of each station have 
been done. Assessment for quality of the data of each station was 
done by filling missing data, testing for outliers and testing for 
temporal homogeneity. After checking for outlier and making 
adjustment and identifying only stations with homogeneous rainfall 
data, rainfall indices were derived and the temporal and spatial 
variability of the indices over the basin were done.  
 
 
Data collection 
 
In this study, daily rainfall data  of the Tekeze river basin  for the 
period from 1960-2009 with available data from 1992-2009 for most 
of the stations were  obtained  from the  archives  of  the    National  
Meteorological  Agency  (NMA) of Ethiopia. The dataset contains 
24 meteorological stations. The spatial distribution of those 
meteorological stations is shown in Figure 2. And Table 1 illustrates 
a generalized geographic location, period of recorded rainfall, and 
percent of missing values information of each selected stations 
used for this study. 
 
 
Data quality and control 
 
Infilling missing daily rainfall 
 
Infilling missing daily rainfall data with percent of missing at most 10  
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Figure 1. Shows the major river basin of Ethiopia, the Tekeze basin and the Tekeze River basin. 

 
 
 

 
 

Figure 2. Spatial distribution meteorological stations over Tekeze river basin. 
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Table 1. Geographical location, period of recorded rainfall and percent of missing values. 
 

ID Station Name Longitude Latitude Altitude Start year End year Available year % of Miss 

1 Adigudom       39.5 13.3 2090 1992 2007 16 4 

2 Adigrat        39.5 14.3 2485 1992 2007 16 3 

3 Adwa           38.9 14.2 1913 1992 2007 16 2 

4 Aksum          38.7 14.1 2101 1992 2007 16 3 

5 Edagahamus     39.3 14.1 1972 1973 2007 35 10 

6 Hawzen         39.4 14 2253 1992 2009 18 3 

7 Humera         36.6 14.3 587 1980 2009 18 10 

8 Korem          39.5 12.5 2454 1992 2009 18 2 

9 Maichew        39.5 12.8 2475 1992 2009 18 2 

10 Mekelle(AB)    39.5 13.5 2252 1960 2009 50 8 

11 Seleklaka      38.5 14.1 2014 1995 2009 15 5 

12 Shire          38.3 14.1 1901 1992 2009 18 1 

13 Wukro          39.6 13.8 2077 1992 2009 18 10 

14 Ambagiorgis    37.6 12.8 2942 1992 2009 18 7 

15 AgereGenet     38.2 11.9 2447 1992 2007 16 10 

16 Enfiranz       37.5 12.3 1832 1992 2007 16 10 

17 Gonder         37.4 12.5 2033 1960 2008 49 7 

18 Shembekite     37.5 12.6 2301 1992 2008 17 4 

19 Debark         37.9 13.1 2807 1992 2009 18 7 

20 Lalibela       39 12 2500 1992 2007 16 9 

21 Nifas Mewicha  38.4 11.8 2947 1992 2007 16 9 

22 Agibe          38 13.5 1128 1998 2007 10 3 

23 sekota         39 12.6 2275 1997 2006 10 7 

24 Abiadi         39 13.6 1647 1998 2007 10 5 

 
 
 

 
 
Figure 3. Flow chart showing infilling daily rainfall data by long-term mean. 

 
 
 

of the recorded data can be done by sample mean taking in to 
account  the  correlation  between  the  daily  rainfalls  is   negligible 

(Presti et al., 2010). Therefore, all the stations having daily missing 
rainfall data at most 10% are filled by mean of  each  day.  Figure  3
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Figure 4. Flow chart showing how to adjust outliers. 

 
 
 
shows how to fill the missing daily rainfall of each station. 
 
 
Outlier detection and adjustment 
 
The identification of outliers has been the primary emphasis of 
quality control work (Gonzalez-Rouca et al., 2001; Göktürk et al., 
2008). Outliers are values greater than a threshold value specific 
for each time series, defined by  
 
RFout= RF0.75 +3*IQR 
 
Where RFout is a threshold value, RF 0.75 is the third quartile and 
IQR is the inter quartile range and any outlier can be replaced by its 
threshold value as stated by Gonzalez-Rouca et al. (2001) and 
Göktürk et al. (2008). In order to keep the information of extreme 
values in the data, outliers can be replaced by the thresh hold value 
in the data. For keeping the outliers of each rainfall indices of each 
station, a threshold value was calculated and any outlier in each 
index could be replaced by the threshold value (RFout). Flow char 
how to adjust outlier is shown in Figure 4. 
 
 
Homogeneity test 
 
A rainfall time sequence is called homogeneous when its variability 
is as the result of weather and climate (Conrad and Pollak, 1950). 
Long period recorded rainfall can be non homogeneous when 
affected by non-climatic factors that make them unrepresentative of 
the actual climatic variations occurring over the time (Peterson et 
al., 1998). Non homogeneity of the time sequence can be occurred 
due to change in location of the rainfall station, instruments, formula 
used to calculate the statistical parameters, observing practices and 
station environments (Göktürk et al., 2008). In order to be sure that 
daily rainfall recorded by all the stations in this study are 
representative in their areas of location and their variability is only 
due to climatic and weather process not other factors, three 
homogeneity test methods were used the Pettitt’s test (Pettitt, 
1979), the Standard Normal Homogeneity Test (SNHT) 
(Alexandersson, 1986), and the Buishand’s test (Buishand, 1982). 
The homogeneity tests by the three methods were done on daily 
maximum  rainfall  (MaxRF),  daily  mean  rainfall   (MEANRF)   and 

annual rainfall (ANNUALRF) of each station. The explanations of 
the three methods of homogeneity test are shown in Figure 5. 
 
 
Derivation of rainfall indices from daily rainfall data 
 
Six rainfall indices describing different aspects of rainfall regime 
were derived from the daily rainfall in this study. The indices have 
been used in various parts of Africa. Many authors define a dry 
spell as n consecutive days without appreciable rainfall (Stern, 
1980; Sivakumar, 1992; Sharma, 1996; Ceballos et al., 2004; Gong 
et al., 2005). In many studies, days with rainfall less than 0.1 mm 
per day are considered a dry spell. Mean values of each index were 
calculated at annual time scale and seasonal time scales (June to 
September). Table 2 provides the name of each index with its 
explanation. 
 
 
Rainfall indices temporal variability and trend detection 
 
The coefficient of variation (CV) is used as statistical descriptor of 
the rainfall indices temporal variability of the stations over Tekeze 
basin. The CV of a variable is the standard deviation the variable 
divided by its mean. High CV of a variable indicates high temporal 
variability of the variable. The existence of a trend of a time series 
of the rainfall indices can be quantified by least squares regression 
in stations having at least 30 year of recorded data and the trend 
statistical significance can be test by Mann-Kendall (MK) test which 
is used in this study. The rainfall indices at Gonder, Mekelle and 
Edagahamus meteorological stations having daily rainfall of period 
1960-2008, 1960-2009 and 1973-2007 respectively were subjected 
to non-parametric Mann-Kendall test to detect trend as means of 
indication for climate change. 
 
 
Rainfall indices spatial distribution and variability 
 
In order to examine the spatial distribution and variability of the 
rainfall indices from the meteorological stations, it was necessary to 
estimate the point rainfall index at unrecorded locations from the 
values at the surrounding stations. Kirging interpolation technique 
was used in this paper. This method is increasingly preferred



44         Int. J. Water Res. Environ. Eng. 
 
 
 

 
 

Figure 5. Flow chart of non homogeneity tests. 

 
 
 

Table 2.  Name of the six selected indices with their explanations. 
 

S/N Explanation Index Name 

1 Dry day A day with rainfall of< 0.1mm  in a day in a year 

2 Dry spell length for June Two or more consecutive dry spells in June 

3 Dry spell length for July Two or more consecutive dry spells in July 

4 Dry spell length for August Two or more consecutive dry spells in August 

5 Dry spell length for September Two or more consecutive dry spells in September 

6 90
th

  percentile The  90
th

 percentile of daily rainfall in a year 

7 95
th

  percentile The  95
th

 percentile of daily rainfall in a year 

 
 
 
because it capitalize on the spatial  correlation  between  
neighboring  observations to  predict  attributed  values  at  un 
sampled  locations (Goovaerts,  1999).  It is not simply based on an 
estimation of the unknown value as a function of the distance.  In 
addition to that it implements the function of unknown spatial 
autocorrelation between the values of the sample points. In 
addition, (Tabios and Salas, 1985) have shown that geostatistical 
prediction techniques (kriging) provide better estimates of rainfall 
than conventional (Thiessen Polygon and Inverse Distance 
Weighted (IDW) methods.  Of the types of kirging, especially 
ordinary kirging was used in this study by using the Integrated Land 
and Water Information System (ILWIS) which is an integrated 
Geographical Information System (GIS) and Remote Sensing   
software. The best fitting models (Exponential, Spherical and 
Circular) are identified by adjusting the nugget, range and sill 
parameters from the experimental semi-variogram of the chosen 
model by visual inspection. Model variogram is used to develop 
interpolated surface to predict spatial continuity in the river basin by 
ordinary kirging. The limiting distance that is the maximum search 
radius to find stations which will be taken in to account during the 
interpolation of the indices is determined by doing pattern analysis 
of the stations with reference to the area of the basin. The spatial 
variability of all the indices can be analyzed  using  ordinary  kirging 

interpolation technique. In Ordinary Kriging the randomized spatial 
function is non-stationary and the mean varies over the area of 
interest. Ordinary Kriging amounts to re-estimating the mean at 
each new location. In Ordinary Kriging, you can influence the 
number of points that should be taken into account in the 
calculation of an output pixel value by specifying a limiting distance 
and a minimum and maximum number of points. Only the points 
that fall within the limiting distance to an output pixel will be used in 
the calculation for that output pixel value. Ordinary Kirging needs 
three steps Spatial Correlation, Empirical Semi-Variogram and 
modeling semi-variogram as shown in the flow chart Figure 6. 
 

 
RESULTS AND DISCUSSION 

 
Temporal variability of dry spell lengths for June, 
July, August and September (months of the kiremt 
season) over Tekeze river basin 
 
There is very high year-to-year variability of dry spell 
lengths  for  the  months  of  Kiremt  season  (June,  July,  



 
 
 
 

 
 

Figure 6. Flow chart in using ordinary 
Kriging and Gonder stations. 

 
 
 
August and September) over Tekeze catchment showing 
coefficient of variability greater than 0.3. As shown in 
Table 3. 
 
 
Temporal variability of 90

th
 and 95

th
 percentiles of 

rainfall over Tekeze river basin 
 
The temporal variability of the 90

th
 and 95

th
 percentiles of 

rainfall over the Tekeze river basin is high with CV from 
0.2 to 0.3. Very high temporal variability of the 90

th
 and 

95
th
 percentile of rainfall is shown in northwestern station 

(Humera), northern station (Abiadi), northeastern stations 
(Edagahamus and Wukro) and southeastern station 
(Adigudem) with (CV>0.3). 
 
 
Trend detection 

 
The six rainfall indices at Gonder, Mekelle 
andEdagahamus meteorological stations having daily 
rainfall of period 1960-2008, 1960-2009 and 1973-2007 
res-pectively were subjected to non-parametric Mann-
Kendall test to detect trend. The time series of the indices 
only with significant trend are shown in Figures 7 to 8. 
The slope of each index was determined by fitting a liner 
regression line. The Mann-Kendall test result is shown in 
Tables 4. A negative trend on the 90

th
 percentile of daily 

rainfall at 95% confidence interval was detected at 
Mekelle station as shown in Figure 7. A positive 
significant trend for 95

th
 percentile of daily rainfall at 

Gonder station was detected as shown in Figure 8. No 
significant trends of the other indices were detected at 
Mekelle.  
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Dry spell length of June, July, August and September 
(DSLJJAS) (months of kiremt season) spatial 
variability over Tekeze river basin 
 
Circular for mean dry spell length of June and mean dry 
spell length of August and exponential for mean dry spell 
length of July and spherical for the mean dry spell length 
of September semi variogram models are fitted. Table 5 
represents the parameters that were obtained from 
experimental semi variogram fitting to the mean DSLJJAS 
data recorded at the stations in the study area and the 
figures with their error figures represents the interpolated 
spatial continuity of the DSLJJAS distributions in the 
catchment. Below detail interpretation of the fitted 
models, parameters of the models and figures with their 
error figures is given for their spatial variability of the 
DSLJJAS in the Tekeze river basin. 
 
 
Interpretation of variogram models for mean 
DSLJJAS  
 
The four variogram models of DSLJJAS (show a 
progressive decrease of spatial autocorrelation 
(equivalently an increase of semi-variance) until some 
distance (range values) in DSLJJAS   in the stations in 
the river basin as shown in Figures 9 to 12. The dry spell 
length for June and August decrease their spatial 
dependence in circular manner in the basin but the dry 
spell length for July and September decrease their spatial 
dependence exponentially and spherically in the basin 
respectively. Even though the variogram models fitted to 
the variogram models show a common characteristics of 
decreasing spatial dependence with distance in the 
DSLJJAS in the catchment, the way they lose their 
spatial dependence with distance in the catchment of the 
four variables is different because of fitted to different  
variogram models with different model parameters 
(nugget, sill and range). 
 
 

Interpretation of the nugget, sill and range values of 
the models of DSLJJAS   
 
The DSLJJAS show a nugget effect in their variogram 
models. These nugget values of the models show two 
important things in the basin. The sampling interval or the 
lag space between the stations in the study area was 
taken to be 60 km because of sparse rainfall station 
distributions in the basin. But the nugget values in the 
DSLJJAS variogram models  indicates the availability of 
few stations in the catchment basin with distance 
between them less than the sampling interval (60 km) 
and a sources of spatial variability of the variables  in 
distance less than the sampling interval. Higher nugget 
value means high spatial variability of the variable less 
than the sampling interval. Due to this the dry spell 
lengths  for  June   and   September   have   high   spatial
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Table 3. Mean and CV of 90th and 95th percentiles and dry spell lengths for each months.   
 

Variables  Station  

Percentiles(mm)  Dry spell lengths (in days) 

90
th

 95
th

  June July August September 

Mean CV Mean CV 
 

Mean CV Mean CV Mean CV Mean CV 

North western stations 

Agibe          6.7 0.2 13.4 0.2 
 

12.1 0.4 3.9 0.3 2.9 0.6 15.3 0.4 

Shire          9.8 0.2 17.9 0.2 
 

5.2 0.4 2.3 0.4 2.5 0.4 6.2 0.5 

Seleklaka      9.6 0.3 17.2 0.2 
 

9.1 0.6 2.7 0.5 3.1 0.6 11.5 0.6 

Humera         5.3 0.6 15.1 0.4 
 

8.4 0.5 6.0 0.5 5.6 0.5 8.8 0.3 
               

Northern stations 

Aksum          6.7 0.2 14.1 0.2 
 

10.4 0.5 3.3 0.5 4.0 0.4 10.9 0.4 

Adwa           7.5 0.2 15.1 0.2 
 

8.5 0.5 2.3 0.6 2.4 0.4 7.6 0.5 

Abiadi         12.3 0.6 19.3 0.4 
 

9.7 0.4 3.6 0.5 2.4 0.4 12.0 0.3 
               

Northeastern stations 

Adigrat        5.1 0.4 11.1 0.3 
 

15.6 0.4 6.1 0.8 5.5 0.6 21.5 0.3 

Edagahamus     6.4 0.8 12.3 0.6 
 

16.3 0.5 4.6 0.9 5.3 0.8 17.7 0.4 

Wukro          4.4 0.6 10.7 0.4 
 

17.7 0.5 5.0 0.5 7.3 0.9 20.1 0.4 

Hawzen         4.6 0.3 10.5 0.3 
 

16.0 0.4 3.8 0.7 4.2 0.7 18.7 0.3 

Mekelle(AB)    4.9 0.4 11.2 0.3 
 

14.5 0.5 3.1 0.8 3.3 0.7 14.1 0.4 
               

South Western stations 

Debark         9.6 0.2 15.9 0.2 
 

3.5 0.7 0.9 0.8 1.4 0.8 4.5 0.6 

Ambagiorgis    10.2 0.2 16.2 0.2 
 

5.4 0.6 2.0 0.6 3.0 0.9 10.9 0.5 

Gonder         10.6 0.2 16.8 0.2 
 

3.9 0.6 1.2 0.5 1.3 0.6 5.1 0.6 

Enfiranz       9.7 0.1 16.6 0.2 
 

4.4 0.5 1.3 0.7 1.4 0.6 6.4 0.6 
               

Southern stations 

Lalibela       8.3 0.2 14.2 0.2 
 

13.8 0.5 1.8 0.9 2.6 0.8 8.9 0.6 

AgereGenet     14.6 0.2 21.6 0.2 
 

6.4 0.7 0.9 0.8 1.1 0.8 5.9 0.7 

Nifas Mewicha  9.8 0.3 16.2 0.3 
 

9.0 0.8 3.2 0.5 2.9 0.5 6.7 0.6 
               

Southeastern stations 

Maichew        6.7 0.2 14.0 0.2 
 

13.9 0.5 4.1 0.5 4.3 0.5 9.7 0.3 

Korem          8.4 0.3 16.6 0.2 
 

14.4 0.4 3.6 0.4 2.9 0.3 8.2 0.6 

Adigudom       4.3 0.5 9.0 0.4 
 

20.5 0.3 4.8 0.6 3.6 0.5 20.4 0.4 

sekota         4.9 0.3 11.8 0.2 
 

14.2 0.4 4.4 0.3 3.7 0.5 18.6 0.4 

 
 
 

variability in distance less than the sampling 
interval in the basin than the dry spell lengths in 
July and August. The different range values of the 
models in DSLJJAS show existence of spatial 
variability  until  its  value  in  the  river  basin   and 

beyond it no existence of spatial dependence of 
the variables in the basin. Higher range value of a 
variable indicates the existence of the spatial 
dependence of the variable of the stations separated 
by higher distance. Due to  this  all  the  DSLJJAS 

have approximately the same spatial dependence 
in high separated stations in the basin. The sill is 
the value of the variogram model attains at range. 
The higher the sill value of a variable, the steep 
becomes the model and the more rapidly changes  
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Figure 7. Time series of   90th percentile with line equation of 90% = 82.65 - 0.0392 * Year at Mekelle Station. 

 
 
 

 
 

Figure 8.  Time series of 95th percentile with line equation of 95%=-85.57+0.0501*Year at Gonder Station. 

 
 
 

Table 4. Mann-kendall tests. 
 

Mann-kendall Tests for Mekelle and Gonder meteorological stations respectively 

Index Kendall’s S P- alpha Test  

 name tau  value(Two-tailed)  result 

      

90
th
 -0.218 -267 0.026 0.05 There is trend 

95
th
 0.253 297 0.011 0.05 There is trend 

 

 
 

Table 5. The best fitting model generated for dry spell length of June, July, August and September for the 
entire river basin. 
 

Index Name Model Nugget sill Range 

Dry spell length for June Circular 4.350 31.650 239612.000 

Dry spell length for July Exponential 0.720 3.220 238818.900 

Dry spell length for August Circular 0.560 2.650 243153.100 

Dry spell length for September Spherical 5.420 34.100 250235.200 
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Figure 9. Circular semi variogram model fitted to dry spell length for June data set. 

 
 
 

Dry Spell Length for July
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Figure 10. Exponential semi variogram model fitted to dry spell length for July data set. 

 
 
 

Dry Spell Length for August
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 Figure 11. Circular semi variogram model fitted to dry spell length for August data set. 
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Dry Spell Length for September
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Figure 12. Spherical semi variogram model fitted to dry spell length for September data set. 

 
 
 

 
 

Figure 13.  Spatial distribution of dry spell lengths for June, July, August and September over Tekeze river basin. 
 
 
 

the variable in space. Because of this the dry spell 
lengths in June and September change more rapidly in the 
basin than the dry spell lengths in July and August do. 
 
 
Spatial distribution estimates of DSLJJAS estimates 
over the river basin 
 
The  DSLJJAS  figures  with  their   error   figures  of   the  

Tekeze river basin are obtained by interpolation using 
their fitted models by ordinary kirging. The figures of 
DSLJJAS indicate the spatial distribution estimates over 
the entire basin using the 24 stations as shown in Figure 
13. The error Figure 14 of the DSLJJAS indicates the 
standard error of estimation of the DSLJJAS by the 
ordinary kirging. As indicated on the figures of DSLJJAS, 
the dry spell length for June varies from about 5 days in 
the west part of the basin to  about  17  days  in  the  east 
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Figure 14. Standard error of spatial distribution of dry spell lengths for June, July, August and September over Tekeze 
river basin. 

 
 
 
part of the basin. The dry spell length for June increases 
progressively from west to east part of the basin. The dry 
spell for July varies from about 2 days in the southwest 
part of the basin to about 5 days in the northwest and 
northeast part of the basin. South, southwest and central 
parts of the basin have lower dry spell length in July than 
other parts. The dry spell length for August varies from 
about 2 days in the southwest and central to about 6 
days in the far northwest and far northeast parts of the 
basin. Dry spell length for September varies from about 
7days in the south and west part of the basin to about 20 
days in the northeast part. Higher standard error values 
in the error figure of the DSLJJAS indicate sources of 
spare stations in the area than the other areas.  These 
standard errors of estimations help for decision making in 
the areas when the Figure 13 of DSLJJAS is used. 

CONCLUSIONS AND RECOMMENDATION 
 
The main findings of the study are summarized below. 
The dry spell length for the months of kiremt (June to 
September) season is highest in the months of June and 
September than the months of July and August in the 
Tekeze river basin. In general, the dry spell length 
distribution for the months of Kiremt season increases 
from west to east part of the river basin. There is very 
high year-to-year variability of dry spell length for the 
months of kiremt season over the basin. The dry spell 
lengths in June and September change more rapidly in 
the river basin than the dry spell lengths in July and 
August. A significantly decreasing trend on the 90

th
 

percentiles of daily rainfall is found at Mekelle 
meteorological station and a significantly increasing trend  



 
 
 
 
on the 95

th
 percentiles of daily rainfall is found at Gonder 

meteorological station. 
The results, figures developed here can be very useful 

for meteorological, hydrological and agricultural 
management activities at the Tekeze river basin. 
Especially the information on temporal and spatial 
variability of dry spell lengths, are needed by the farmers 
on the river basin for deciding on crop types, varieties 
and dates for land preparations, planting and harvesting 
and for planning of civil and water resources projects. As 
in this study only 24 meteorological stations having 
different time periods were used, it also very important to 
consider world meteorological standard distributions of 
the stations in the basin  with the same time period of 
data so that the result can be improved. Again the 
interpolation technique used in the study of the spatial 
variability was ordinary kirging but it is very important to 
do evaluation of interpolation techniques like simple 
kirging, co-kirging and others with ordinary kirging and 
choosing the best interpolation technique in the basin can 
improve the results. 
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